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1 Non-Linear Models

Last lab, we went over simple linear regression, both theory and estimation. In simple
linear regression one uses a linear model to predict the value of a dependent Y with an
independent variable X. To do so, we hypothesize that the relationship between Y and X
can be approximated via the equation

Yi = α+ β ·Xi + εi

where εi
i.i.d∼ (0, σ2) and E[εiX] = 0. We then estimated the parameters of this model

and went over how to check the assumptions of this model regarding independence and
constant variance of the residuals.

However, it is important to again emphasize that this does not necessarily represent
the true relationship between X and Y . This is just a guess at the relationship, one that
can be useful for prediction. However, we can easily imagine other models that specify
other relationships between X and Y and use similar methods to estimate those.

1.1 Looking at the Data

Consider the data and fitted regression line depicted in Figure 1. The scatter plot of
X against Y suggests a non-linear relationship. Trying to fit a simple linear regression
model to the data, clearly does not result in a great fit. The linear model systematically
overpredicts in the middle of the data and underpredicts otherwise. This suggests that we
should try another model. We hypothesize there is a relationship between X and Y of the
form

Yi = α+ β1 ·Xi + β ·X2
i + εi

εi
i.i.d∼ (0, σ2); 0 = E[εiXi] = E[εiX

2
i ]
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Figure 1: A simple linear model clearly does not do a good job of describing this data

Note that this is similar to our simple linear regression model of Y against X, but
in this case we are suggesting that we regress Y against X and X2. In particular the
assumptions on the errors are the same, but in this case we impose that our errors are
uncorrelated with both X and X2.

To estiamte this model, we could derive an estimator like we did for OLS, but again,
this is tedious and not very revealing. Instead we turn to Stata to estimate these.

1.2 Interpreting Stata Output

Here we use Stata code genereted by Prof. Convery. In this example, Prof. Convery is
interested in estimating a quadratic relationship between the price of a house (PRICE)
and it’s size in square feet (SQFT). He hypothesizes that there is a relationship between
these two quantities of the form

PRICE = α1 + α2 · SQFT 2 + ε

where the normal assumptions are imposed on our error term. Prof. Convery is es-
pecially interested in a couple economic quantities that he hopes to estimate through this
model. First he is interested in the slope of this model
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Figure 2: Stata Output from Regressing price against square footage squared

slope =
d PRICE

d SQFT
(SQFT ) = 2α2 · SQFT

and second, the elasticity of price with respect to house size

elasticity = slope · SQFT
PRICE

In order to estimate these, he must estimate the parameters of the model. He does this
in stata, after loading the data in, through the command

reg price sqft2

The output of this command is given below in Figure 2. Using these estimates, we can
estimate our slope and elasticity at any point. Note that to estimate elasticity, we need to
use ˆPRICE in the equation for PRICE, since we want the elasticity from our estimated
quadratic relationship.
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1.3 Generalization and Indicators

Note that using this framework, we can hypothesize and estimate any relationship between
Y and X, so long as that relationship is a weighted sum of functions of X. Formally, this
means that we can estimate relationships of the form1

Yi =
K∑
k=0

βkfk(Xi) + εi

so long as we assume that εi is i.i.d with constant variance and is uncorrelated with
each of our functions of X. For example, this means we can estimate a relationship of the
form

Yi = β0 + β1X
2
i + β2 ln(Xi) + β3e

Xi + εi

so long as we assume that each εi is independent and uncorrelated with X2
i , ln(Xi) and

eXi .2 Of course, this would be a wierd relationship to see in the data, and you may not
want to model the data in this way. But if you did, you could estimate this using the same
basic techniques as linear regression3

In particular, we may have a categorical X, e.j location, and we want to get the effect
of this variable on Y . To quantify this effect, we may generate an indicator variable. And
indicator variable is a variable that takes value 1 when a certain condition is satisfied and
0 otherwise. For example, suppose Xi is a variable that tells you which college person i
attends. An indicator for going to UCLA would look like:

IUCLA(Xi) =

{
1 if person i went to UCLA, i.e Xi = UCLA

0 otherwise, i.e if Xi 6= UCLA

Because this is just a function of Xi, we can use our framework from above to regress an
outcome variable Yi against Xi. Indicators also give us easy intepretations of coeffecients.
Suppose our outcome variable Yi is Days in Sun in 2018. We want to compare how UCLA
students compare to the general universe of college students. We specify a relationship of
the form

Yi = β0 + β1IUCLA(Xi) + εi

Note that from this model we have that

1By estimate we mean that we can estimate the β coeffecients of these models
2If our error is independent of X, it will also be independent (and therefore uncorrelated) with any

function of X
3Check the assumptions in the same way, run the same commands in Stata, etc.
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E[Yi|IUCLA(Xi) = 0] = β0

E[Yi|IUCLA(Xi) = 1] = β0 + β1

This gives us both an interpretation of the parameters of our model, and an easy way
to estimate them. β0 is the average days in the sun for students that do not attend UCLA
wheras β0 + β1 is the average days in the sun for students that do attend UCLA. That
is, β1 is the average number of days more (or less) that UCLA students spend in the sun
compared to non UCLA students. We can use this information to come up with estimators
of β0 and β1. Specifically

β̂0 = Sample Average of Days in the Sun for Non-UCLA Students

β̂1 = Sample Average of Days in the Sun for UCLA Students− β̂0

2 Confidence Intervals

For the previous sections, we have been interested in estimating the parameters of the
model specified. However, we may also be interested in how close the parameters of our
model are to the true parameters in the real world. To do this, we create confidence
intervals.

The first step in understanding confidence intervals is to recognize that our sample
estimators for β, as functions of the data, are random variables themselves. To get a
sense of how close these estimators are to the true value of β we may want to estimate
the distribution of these estimators. Unfortunately, since we do not know the exact finite
sample distribution of these estimators, we must rely on an asymptotic distribution. We
will go into specifics of these distributions later, but suppose for expositions sake, that we
know that

β̂
d→ N(β, σ2)

For some σ2. That is, our estimator β̂ is approximately normally distributed with mean
β̂ and some variance, σ2. We get a random sample and estimate β̂, that is we get a draw
from the distribution of β̂. Now, we are interested in how close that β̂ is to the true value
of β. One way of getting a sense of this is to create a 95% confidence interval. That is a
range of values, based on β̂ and our variance σ2, that we think the true β could plausibly
be contained in (with 95% confidence).

To obtain this range, ”invert” the asymptotic distribution. That is we take as an
interval for β all the values of β that could plausibly generate a β̂ value like the one we see
in our data. For a 95% confidence interval, this is the values of β that would generate the
β̂ seen in our data (or something more extreme) with probability at least 95%.
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